WHAT IS DETOXIFICATION?

The liver is a center where physiological and biochemical events occur in our body. Among all these functions, the most important function of the liver is detoxification (Sheriock, 2011). The liver carries out detoxification processes with enzymes. These enzymes transform toxic chemicals into water-soluble substances, and the products resulting from this transformation are excreted from the body with bile and urea as the end product (Liska, 1998; Sheriock, 2011).

Detoxification consists of 2 main stages: phase 1 and phase 2. In Phase 1 of the detoxification process, the liver converts toxic substances into intermediate metabolites that are more toxic than the original. In Phase 2, the second stage of detoxification, these more toxic intermediate metabolites are converted into more harmless and water-soluble substances by using enzymes to be excreted with bile or urea (Liska, 1998).

 

Detoxification Phase 1 Enzymes and Genes

Phase I generally constitutes the first enzymatic defense system against toxins. As a result of this stage in detoxification, reactive molecules that may be more toxic than the first molecule are produced (Vermeulen, 1996). In phase 1, oxidation, reduction and hydrolysis reactions occur by various enzyme classes (Grant, 1991).

 

Cytochrome P450 (CYP450)

The cytochrome P450 superfamily (CYP450) generally metabolizes xenobiotics, steroid hormones and drugs. It is found mainly in the liver, but also in enterocytes, kidneys, lung and even the brain (Danielson, 2002).

Any variability in the number and structure of CYP450 enzymes changes the individual's response to toxins, either positively or negatively (Danielson, 2002). Genetic polymorphisms of these CYP450 genes alter the expression and function of the enzymes. This situation causes people to be more advantageous or disadvantaged in some situations (Hodges & Minich, 2015). For example, an individual's ability to metabolize 90% of currently used drugs depends largely on the genetic expression of these enzymes (Chen et al., 2011).

 

What is the CYP1A1 gene?

CYP1A1 is a member of the CYP450 family. They play a role in the transformation of toxic substances (Polycyclic aromatic hydrocarbons (PAHs) and estrogen metabolism. CYP1A1 is one of the most important genes responsible for the bioactivation of tobacco carcinogenic substances, including nitrosamines and benzopyrenes, as well as alcohol metabolism (Bandeira et al., 2022).

 

What is the CYP1A2 Gene?

CYP1A2 is part of the CYP450 family; They play an important role in the metabolism of caffeine, drugs and some hormones (e.g. melatonin) (Hodges & Minich, 2015). Gender, smoking, ethnicity, food compounds, drugs, and genetic variations all affect CYP1A2 activity. More than 40 SNPs have been found in the CYP1A2 gene, and one of the most extensively studied is rs762551. CYP1A2 AA homozygotes are generally classified as “extensive metabolizers,” while individuals with the CC/CA genotype are classified as “poor metabolizers” (Nikrandt et al., 2022).

 

Phase 1- Cytochrome P450(CYP450)

Genes

rs-code

Minor allele

Minor Allele Description

Reference 

CYP1A1

rs1048943

C

Increased relative risk for high enzyme activity.

(Wang et al., 2017)

CYP1A2

rs12720461

T

Increased relative risk for decreased enzyme activity.

(Szalai et al., 2014)

CYP1A1

rs2472297

T

Increased relative risk for high enzyme activity.

(Cornelis et al., 2015)

CYP1A2

rs762551

A

Increased relative risk for high enzyme activity.

(Wang et al., 2012)

 

The table above includes CYP genes and polymorphisms. These polymorphisms are genetic variants that may predispose a person to certain conditions or protect a person against certain conditions. Studies on these genes are as follows; Individuals with the CYP1A1 gene rs2472297 polymorphism were associated with lower plasma caffeine levels than other individuals. That means, they metabolized caffeine faster (Cornelis et al., 2015). CYP1A1 rs1048943 Ile462Val polymorphism was found to increase the risk of cervical cancer (Wang et al., 2017). Individuals with the CYP1A2 rs762551 polymorphism have been found to have an overall increased risk of cancer (Wang et al., 2012). Individuals with the CYP1A2 rs12720461 polymorphism have been shown to have a high risk of breast, lung and ovarian cancer (Szalai et al., 2014).

 

CYP1A1 Inducers

CYP1A1 Inhibitors

CYP1A2 Inducers

CYP1A2 Inhibitors

Green tea

Sulforaphane

Green tea

Sulforaphane

 

Quercetin

 

Quercetin

 

Curcumin

 

Curcumin

 

 

References

Bandeira, C. M., Almeida, A. Á., Oliveira Alves, M. G., Nogueira Pascoal, M. B., Sales Chagas, J. F., Neto, M. B., Nunes, F. D., Lima Carta, C. F., & Almeida, J. D. (2022). The Fagerström and AUDIT Tests as Probable Screening Tools in Oral Cancer and Their Correlation with CYP1A1, GSTM1, GSTP1, and GSTT1 Gene Expression. International Journal of Environmental Research and Public Health, 19(7). https://doi.org/10.3390/ijerph19073991

Chen, Q., Zhang, T., Wang, J.-F., & Wei, D.-Q. (2011). Advances in human cytochrome p450 and personalized medicine. Current Drug Metabolism, 12(5), 436-444. 

Cornelis, M. C., Byrne, E. M., Esko, T., Nalls, M. A., Ganna, A., Paynter, N., Monda, K. L., Amin, N., Fischer, K., Renstrom, F., Ngwa, J. S., Huikari, V., Cavadino, A., Nolte, I. M., Teumer, A., Yu, K., Marques-Vidal, P., Rawal, R., Manichaikul, A., Wojczynski, M. K., Vink, J. M., Zhao, J. H., Burlutsky, G., Lahti, J., Mikkilä, V., Lemaitre, R. N., Eriksson, J., Musani, S. K., Tanaka, T., Geller, F., Luan, J., Hui, J., Mägi, R., Dimitriou, M., Garcia, M. E., Ho, W. K., Wright, M. J., Rose, L. M., Magnusson, P. K., Pedersen, N. L., Couper, D., Oostra, B. A., Hofman, A., Ikram, M. A., Tiemeier, H. W., Uitterlinden, A. G., van Rooij, F. J., Barroso, I., Johansson, I., Xue, L., Kaakinen, M., Milani, L., Power, C., Snieder, H., Stolk, R. P., Baumeister, S. E., Biffar, R., Gu, F., Bastardot, F., Kutalik, Z., Jacobs, D. R., Jr., Forouhi, N. G., Mihailov, E., Lind, L., Lindgren, C., Michaëlsson, K., Morris, A., Jensen, M., Khaw, K. T., Luben, R. N., Wang, J. J., Männistö, S., Perälä, M. M., Kähönen, M., Lehtimäki, T., Viikari, J., Mozaffarian, D., Mukamal, K., Psaty, B. M., Döring, A., Heath, A. C., Montgomery, G. W., Dahmen, N., Carithers, T., Tucker, K. L., Ferrucci, L., Boyd, H. A., Melbye, M., Treur, J. L., Mellström, D., Hottenga, J. J., Prokopenko, I., Tönjes, A., Deloukas, P., Kanoni, S., Lorentzon, M., Houston, D. K., Liu, Y., Danesh, J., Rasheed, A., Mason, M. A., Zonderman, A. B., Franke, L., Kristal, B. S., Karjalainen, J., Reed, D. R., Westra, H. J., Evans, M. K., Saleheen, D., Harris, T. B., Dedoussis, G., Curhan, G., Stumvoll, M., Beilby, J., Pasquale, L. R., Feenstra, B., Bandinelli, S., Ordovas, J. M., Chan, A. T., Peters, U., Ohlsson, C., Gieger, C., Martin, N. G., Waldenberger, M., Siscovick, D. S., Raitakari, O., Eriksson, J. G., Mitchell, P., Hunter, D. J., Kraft, P., Rimm, E. B., Boomsma, D. I., Borecki, I. B., Loos, R. J., Wareham, N. J., Vollenweider, P., Caporaso, N., Grabe, H. J., Neuhouser, M. L., Wolffenbuttel, B. H., Hu, F. B., Hyppönen, E., Järvelin, M. R., Cupples, L. A., Franks, P. W., Ridker, P. M., van Duijn, C. M., Heiss, G., Metspalu, A., North, K. E., Ingelsson, E., Nettleton, J. A., van Dam, R. M., & Chasman, D. I. (2015). Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry, 20(5), 647-656. https://doi.org/10.1038/mp.2014.107 

Danielson, P. B. (2002). The Cytochrome P450 Superfamily: Biochemistry, Evolution and Drug Metabolism in Humans. Current Drug Metabolism 3(6). https://dx.doi.org/10.2174/1389200023337054

Grant, D. M. (1991). Detoxification Pathways in the Liver. In R. A. Harkness, R. J. Pollitt, & G. M. Addison (Eds.), Journal of Inherited Metabolic Disease (pp. 421-430). Springer Netherlands. https://doi.org/10.1007/978-94-011-9749-6_2 

Hodges, R. E., & Minich, D. M. (2015). Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. Journal of Nutrition and Metabolism, 2015, 760689. https://doi.org/10.1155/2015/760689 

Liska, D. J. (1998). The detoxification enzyme systems. Altern. Med. Rev, 187-198. 

Nikrandt, G., Mikolajczyk-Stecyna, J., Mlodzik-Czyzewska, M., & Chmurzynska, A. (2022). Functional single-nucleotide polymorphism (rs762551) in CYP1A2 gene affects white coffee intake in healthy 20- to 40-year-old adults. Nutrition Research, 105, 77-81. https://doi.org/10.1016/j.nutres.2022.06.003

Sheriock, S. (2011). Diseases of the liver and biliary system. Blockwell Scientific Publications. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4954253/ 

Szalai, R., Magyari, L., Matyas, P., Duga, B., Banfai, Z., Szabo, A., Kovesdi, E., & Melegh, B. (2014). Genetic polymorphisms in promoter and intronic regions of CYP1A2 gene in Roma and Hungarian population samples. Environ Toxicol Pharmacol, 38(3), 814-820. https://doi.org/10.1016/j.etap.2014.09.012 

Vermeulen, N. P. E. (1996). Role of Metabolism in Chemical Toxicity, In:Ioannides, C.,ed., CytP450: Metabolic and Toxicological Aspects, BocaRaton. CRC press, Inc, 29-53. 

Wang, H., Zhang, Z., Han, S., Lu, Y., Feng, F., & Yuan, J. (2012). CYP1A2 rs762551 polymorphism contributes to cancer susceptibility: a meta-analysis from 19 case-control studies. BMC Cancer, 12(1), 528. https://doi.org/10.1186/1471-2407-12-528 

Wang, L.-N., Wang, F., Liu, J., Jin, Y.-H., Fang, C., & Ren, X.-Q. (2017). CYP1A1 Ile462Val Polymorphism Is Associated with Cervical Cancer Risk in Caucasians Not Asians: A Meta-Analysis [Original Research]. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.01081